• भारत सरकार के विज्ञान एवम प्रौदयोगिकी मंत्रालय के जैव प्रौदयोगिकी विभाग की स्वायत्त संस्थान
  • Home
  • Faculty Profile

1.          Chauhan, N.K., Anand, A., Sharma, A., Dhiman, K., Gosain, T.P., Singh, P., Singh, P., Khan, E., Chattophyay, G., Kumar, A., Varadarajan, R., Sharma, D., Ashish, Sharma, T.K., Singh, R*.  Structural and functional characterization of Rv0792c from Mycobacterium tuberculosis: identifying small molecule inhibitor against HutC protein. Microbiology Spectrum, 2022 (In press).

2.          Gosain, T.P., Singh,M., Singh, C., Thakur, K. and Singh, R*. Disruption of MenT2 toxin impairs the growth of Mycobacterium tuberculosis in guinea pigs. Microbiology, 168 (11) 2022, doi: 10.1099/mic.0.001246.

3.          Singh, P., Rawat, S., Agrahari, A.K., Singh, M., Chugh, S., Gurcha, S., Singh, A., Abrahams, K., Besra, G.S., Asthana, S., Rawat, D.S. and Singh, R*. NSC19723, a Thiacetazone-like Benzaldehyde Thiosemicarbazone Improves the Efficacy of TB Drugs In Vitro and In VivoMicrobiology Spectrum, 2022, doi:10.1128/spectrum.02592-22.

4.          Ahmed, S., Chattopadhyay, G., Manjunath, K., Bhasin, M., Singh, N., Rasool, M., Das, S., Rana, V., Khan, N., Mitra, D., Asok, A., Singh, R. and Varadarajan, R. Combining cysteine scanning with chemical labeling to map protein-protein interactions and infer bound structure in an intrinsically disordered region. Frontiers in Molecular Biosciences, 2022, https://doi.org/10.3389/fmolb.2022.997653.

5.          Singh, N., Sharma, N., Singh, P., Pandey, M., Ilyas, M., Sisodiya, L., Choudhury, T., Gosiain, T.P., Singh, R., Atmakuri, K. HupB, a nucleoid associated protein is critical for survival of M. tuberculosis under host-mediated stresses and for enhanced tolerance to key first-line antibiotics. Frontiers in Microbiology, 2022, doi: 10.3389/fmicb.2022.937970

6.          Chaudhary, D., Singh, A., Marzuki, M., Ghosh, A., Kidwai, S., Gosain, T.P., Chawla, K., Gupta, S.K., Agarwal, N., Saha, S., Kumar, Y., Thakur, K.G., Singhal, A. and Singh, R*. Identification of small molecules targeting homoserine acetyl transferase from Mycobacterium tuberculosis and Staphylococcus aureusScientific Reports, 2022, 12(1):13801, doi: 10.1038/s41598-022-16468-w. 

7.          Sindhu, G., Kholiya R., Kidwai, S., Singh, P., Singh, R., and Rawat, D.S. Design and synthesis of benzimidazole derivatives as antimycobacterial agents. J Biochem Mol Toxicol, 2022, 36(9): e23123, doi: 10.1002/jbt.23123.

8.          Chattopadhyay, G., Bhasin. M., Ahmed, S., Gosain, T.P., Ganesan, S., Das, S., Thakur, C., Chandra, N., Singh, R.* and Vardarajan, R. Functional and Biochemical characterization of the MazEF6 Toxin-Antitoxin system of Mycobacterium tuberculosisJournal of Bacteriology, 2022, e000582, doi: 10.1128/jb.0058-22. * Co-corresponding author

9.          Mishra, B.B., Essafi, M., Singh, R., Gupta, S., and Parihar. S.P. Repurposed drugs as Immune-Modulators to Combat Infectious Diseases. Frontiers in Immunology, 2022, 1-3.  

10.       Behura, A., Das, M., Kumar, A., Naik, L., Mishra, A., Manna, D., Patel, S., Mishra, A., Singh, R. and Dhiman, R. ESAT-6 imepedes IL-18 mediated phagosome lysosome fusion via microRNA-30a upon Calcimycin treatment in mycobacteria infected macrophages. International Immunopharmacology, 101(2), 2021,108319.

11.       Sharma, A., Sagar, K., Chauhan, N.K., Gosain, T.P., Gupta, N., Venkataraman, B., Singh, R.* and Gupta, A.* HigB1 toxin in Mycobacterium tuberculosis is upregulated during stress and required to establish infection in guinea pigs. Frontiers in Microbiology, 2021, doi:10.3389/fmicb.2021.748890. 

12.       Khurana, H., Srivastava, M., Chaudhary, D., Gosain, T.P., Kumari, R., Bean, A.C.,  Chugh, S., Maiti, T., Stephens, C.E.,  Asthana, S., and Singh, RIdentification of diphenyl furan derivative via high throughput and computational studies as ArgA inhibitor of Mycobacterium tuberculosisInternational Journal of Biological Macromolecules, 2021, doi: 10.1016/j.ijbiomac.2021.11.017. 

13.       Mishra, A., Behura, A., Kumar, A., Naik, L., Swain, A., Das, M., Sarangi, S.S., Dokania, P., Dirisala, V.R., Bhutia, S.K., Mishra. A., Singh, R. and Dhiman, R. P2X7 receptor in multifaceted cellular signalling and its relevance as a potential therapeutic target in different diseases. European Journal of Pharmacology, 906, 2021, 174235, 1-23. 

14.       Harale, B., Kidwai, S., Ojha, D., Singh, M., Chouhan, D.K., Singh, R., Khedkar, V. and Rode, A.B. Synthesis and evaluation of antimycobacterial activity of riboflavin derivatives. Bioorg Med Chem Letters, 2021, 48:128236, doi: 10.1016/j.bmcl.2021.128236.

15.       Bouzeyne, R., Chugh, S., Gosain, T.P., Barbouche, M.R., Haoues, M., Rao, K.V.S., Essafi, M. and Singh, R. Co-administration of anticancer candidate MK-2206 enhances the efficacy of BCG vaccine against Mycobacterium tuberculosis in mice and guinea pigs. Frontiers in Immunology, 12, 2021, 1-18.  

16.       Gagandeep, Singh, M., Kidwai, S., Das, U.S., Velpandian, T., Singh, R. and Rawat, D.S.  Monocarbonyl curcumonoids as antituberculosis agents with their moderate in-vitro metabolic stability on human liver microsomes. Journal of Biomolecular and Molecular Toxicology, 35(6), 2021, 1-10.  

17.       Singh, M., Schiavone, N., Papucci, L., Maan, P., Kaur, J., Singh, G., Nandi, U., Nosi, D., Tani, A., Khuller, G., Priya, M., Singh, R. and Kaur, I.P. Streptomycin sulphate loaded solid lipid nanoparticles show enhanced update in macrophages, lower MIC in Mycobacterium and improved oral bioavailability. Manuscipt accepted in European Journal of Pharmaceutics and Biopharmaceutics, 160, 2021, 100-124.   

18.       Mishra, A., Behura, A., Kumar, A., Ghosh, B., Naik, L., Mawatlal, S., Mohanty, S.S., Mishra, A., Saha, S., Bhutia, S.K., Singh, R. and Dhiman, R. Soybean lectin induces autophagy through P2RX7 dependent activation of MF-kB-ROS pathway to kill intracellular mycobacteria. Biochimica et Biophysica Acta 1865 (2), 2021, 1-15.  

19.       Kumar, S.M., Singh, R., Pandey, S., Gayathri, S., Kanjo, K., Siddeeqi, S., Khan, M.S., Kalita, P., Girish, N., Upadhyaya, A., Reddy, P., Pramanick, I., Bhasin, M., Mani, S., Bhattacharyya, S., Joseph, J., Karthika, T., Victor, S.R., Dutta, S., Singh, R., Nadig, G. and Varadarajan, R. Design of a highly thermotolerant, immunogenic SARS-CoV2 spike fragment. Journal of Biological Chemistry 296, 2021, 1- 14. 

20.       Jadhav, P., Sinha, V.K., Chugh, S., Kotyada, C., Bachhav, D., Singh, R., Rothweller, U. and Singh, M. 2.09Å resolution structure of E. coli HigBA toxin-antitoxin complex reveals an ordered DNA-binding domain and intrinsic dynamics in antitoxin. Biochemical Journal 477(20), 2020, 4001-4019.

21.       Sharma, A., Chattopadhyay, G., Chopra, P., Bhasin, M., Thakur, C., Agarwal, S., Ahmed, S., Chandra, N., Varadarajan, R. and Singh, R. VapC21 toxin contributes to drug-tolerance and interacts with Non-cognate VapB32 antitoxin in Mycobacterium tuberculosisFrontiers in Microbiolgy 11:2037, 2020, 1-15.   

22.       Singh, P., Khurana, H., Yadav, S.P., Dhiman, K., Singh, P., Ashish, Singh, R. and Sharma, D. Biochemical characterization of ClpB protein from Mycobacterium tuberculosis and identification of its small molecule inhibitors. International Journal of Biological Macromolecules 165 (Pt A) 2020, 375-387. 

23.       Meena, C.L., Singh, P., Shailiwal, R.P., Kumar, V., Kumar, A., Tiwari A.K., Asthana, S., Singh, R.* and Mahajan, D*. Synthesis and evaluation of thiophene based small molecules as potent inhibitors of Mycobacterium tuberculosisEuropean Journal of Medicinal Chemistry, 208, 2020. * co-corresponding author 

24.       Agarwal, S., Sharma, A., Bouzeyen, R., Deep, A., Sharma, H., Mangalaparthu, K., Datta, K.K., Kidwai, S., Gowda, H., Varadarajan, R., Sharma, R.D., Thakur, K.G.  and Singh, RVapBC22 toxin-antitoxin system from Mycobacterium tuberculosis is required for pathogenesis and modulation of host immune response. Science Advances 2020, 1-15. 

25.       Arora, G., Gagandeep, Behura, A. Gosain, T.P., Shaliwal, R.P., Kidwai S., Singh P., Kandi S.K., Dhiman R., Rawat, D.S. and Singh, R. NSC 18725, a pyrazole derivative inhibits growth of intracellular Mycobacterium tuberculosisby induction of autophagy. Frontiers in Microbiology 10, 2020, 1-13.  

26.       Bouzeyen, R., Haoues, M., Barbouche, M.R., Singh, R and Essafi, M. FOXO3 transcription factor regulated IL-10 expression in mycobacteria-infected macrophages, tuning their polarization and the subsequent adaptive immune response. Frontiers in Immunology 10, 2020.

27.       Pierson, E., Haufroid, M., Gosian, T.P., Chopra, P., Singh, R. and Wouter, J. Identification and repurposing of trisubstituted harmine derivatives as novel inhibitors of Mycobacterium tuberculosis phosphoserine phosphatase. Molecules 25(2), 2020, 1-13. 

28.       Tandon, H., Sharma, A., Wadhwa, S., Varadarajan, R., Singh, R., Srinivasan, N., and Sandhya, S. Bioinformatic and mutational studies of related toxin-antitoxin pairs in M. tuberculosis predict and identify key functional residues. Journal of Biological Chemistry 294(23) 2019, 9048-9063.

29.       Maurya SS, Gosain TP, Kidwai S, Singh R and Rawat DS. Synthesis of 1,3,4-oxadiazole and imidazo [1,2-1] pyridine based molecular hybrids and their in vitro antituberculosis and cytotoxicity studies. Indian Journal of Chemistry, 2019, 58B, 1005-1018. 

30.       Kidwai, S., Bouzeyen, R., Chakraborti, S., Khare, N., Das, S., Priya Gosain, T., Behura, A., Meena, C. L., Dhiman, R., Essafi, M., Bajaj, A., Saini, D. K., Srinivasan, N., Mahajan, D., and Singh, R. NU-6027 Inhibits Growth of Mycobacterium tuberculosis by Targeting Protein Kinase D and Protein Kinase G. Antimicrobial Agents and Chemotherapy 63 (9)2019

31.       Banerjee, S. K., Lata, S., Sharma, A. K., Bagchi, S., Kumar, M., Sahu, S. K., Sarkar, D., Gupta, P., Jana, K., Gupta, U. D., Singh, R., Saha, S., Basu, J., and Kundu, M. The sensor kinase MtrB of  Mycobacterium tuberculosisregulates hypoxic survival and establishment of infection. Journal of Biological Chemistry 294 (52), 2019; 19862-19876. 

32.       Behura, A., Mishra, A., Chugh, S., Mawatwal, S., Kumar, A., Manna, D., Mishra, A., Singh, R., and Dhiman, R. ESAT-6 modulates Calcimycin-induced autophagy through microRNA-30a in mycobacteria infected macrophages. Journal of Infection 79(2), 2019; 139-152.

33.       Gupta, A., Das, P. N., Bouzeyen, R., Karmakar, S. P., Singh, R., Bairagi, N., and Chatterjee, S. (2019) Restoration of cytosolic calcium inhibits Mycobacterium tuberculosis intracellular growth: Theoretical evidence and experimental observation. Journal of Theoretical Biology 472, 2019; 110-123.

34.       Sitwala, N. D., Vyas, V. K., Gedia, P., Patel, K., Bouzeyen, R., Kidwai, S., Singh, R., and Ghate, M. D. 3D QSAR-based design and liquid phase combinatorial synthesis of 1,2-disubstituted benzimidazole-5-carboxylic acid and 3-substituted-5H-benzimidazo[1,2-d][1,4]benzodiazepin-6(7H)-one derivatives as anti-mycobacterial agents. MedChemComm 10, 2019; 817-827.

35.       Tandon H, Sharma A, Sandhya S, Srinivasan N and Singh RMycobacterium tuberculosis Rv0366c-Rv0367c encodes a non-canonical PezAT-like toxin-antitoxin pair. Scientific Reports 2019; 9: 1-19.

36.       Arora G, Chaudhary D, Kidwai S, Sharma D and Singh RCitE enzymes are essential to establish Mycobacterium tuberculosis infection in macrophages and guinea pigs. Frontiers in Cellular and Infection Microbiology 2018; 8:1-15.

37.       Deep, A., Tiwari P., Agarwal, S., Kaundal, S., Kidwai, S., Singh R*, and Thakur, K. G.*  Structural, functional and biological insights into the role of Mycobacterium tuberculosis VapBC11 toxin-antitoxin system: targeting a tRNase to tackle mycobacterial adaptation. Nucleic acids Research 2018; 21: 11639-11655 *co-corresponding author.

38.       Dhiman, R., and Singh, R. Recent advances for identification of new scaffolds and drug targets for Mycobacterium tuberculosisIUBMB life 2018; 70: 905-916.

39.       Mawatwal, S., Behura A., Mishra A., Singh R., and Dhiman R. Calcimycin induced IL-12 production inhibits intracellular mycobacterial growth by enhancing autophagy. Cytokine 2018; 111: 1-12.

40.       Jha, B., Kumar, D., Sharma, A., Dwivedy, A., Singh, R., and Biswal, B.K. Identification and structural characterization of a histidinol phosphate phosphatase from Mycobacterium tuberculosisJournal of Biological Chemistry 2018; 293 (26), 10102-10118.

41.       Negi B, Poonan P, Ansari MF, et al. Synthesis, antiamoebic activity and docking studies of metronidazole-triazole-styryl hybrids. European journal of medicinal chemistry 2018; 150: 633-41.

42.       Agarwal S, Tiwari P, Deep A, Kidwai S, Gupta S, Thakur KG and Singh R. System wide analysis reveals differential regulation and in vivo essentiality of VapBC TA systems from Mycobacterium tuberculosisTheJournal of Infectious Diseases 2018; 217 (11), 1809-1820.

43.       Deep A, Kaundal S, Agarwal S, Singh R and Thakur KG. Crystal structure of Mycobacterium tuberculosis VapC20 toxin, and its interaction with cognate antitoxin, VapB20 suggests a model for toxin-antitoxin assembly. FEBS Journal; 2017; 284: 4066-4082.

44.       Mawatwal S, Behura A, Ghosh A, Kidwai S, Mishra A, Deep A, Agarwal S, Saha S, Singh R and Dhiman R. Calcimycin mediates mycobacterial killing by inducing intracellular calcium regulated autophagy in a P2XR7 dependent manner. Biochemical Biophysical Acta 2017; 1861 (12), 3190-3200.

45.       Kidwai S, Park CY, Mawatwal S, Tiwari P, Jung MG, Gosain TP, Kumar P, Alland D, Kumar S, Bajaj A, Hwang YK, Song CS, Dhiman R, Lee IY and Singh R. The dual mechanism of action of 5-Nitro-1,10-phenanthroline against Mycobacterium tuberculosisAntimicrobial Agents and Chemotherapy 2017; 61 (11), 1-18.

46.       Singh M, Tiwari P, Arora G, Agarwal S, Kidwai S and Singh R. Establishing Virulence associated Polyphosphate Kinase 2 as a drug target for Mycobacterium tuberculosisScientific Reports; June 2016; 6:26900, 1-15

47.       Banerjee SK, Kumar M, Alokam R, Sharma AK, Chatterjee A, Kumar R, Sahu SK, Jana K, Singh R, Yogeeswari P, Sriram D, Basu J, Kundu M. Targeting multiple response regulators of Mycobacterium tuberculosis auguments the host immune response to infection. Scientific Reports; May 2016; 6: 25851, 1-13

48.       Negi B, Kumar D, Kumbukgolla W, Jayaweera S, Ponnan P, Singh R, Agarwal S and Rawat DS. Antimethicillin resistant Staphylococcus aureus activity synergism with oxacillin and molecular docking studies of metronidazole-triazole derviatives. European Journal of Medicinal Chemistry 2016. June 10, 115: 426-37.

49.       Kang YG, Park CY, Shin H, Singh R, Arora G, Yu CH and Lee IY. Synthesis and antitubercular activity of 2-nitroimidazooxazines with modification at the C-7 position as PA-824 analogs. Bioorganic and Medicinal Chemistry Letters 2015; Sept 1: 25 (17); 365-73. 

50.       Tiwari P, Arora G, Singh M, Kidwai S, Narayan O and Singh R*. MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs. Nature Communications Jan 22; 6:6059 doi 10.1038/ncomms 7059. 

51.       Kumar D, Khare G, Beena, Kidwai S, Tyagi AK, Singh R and Rawat DS. Novel isoniazid-amidoether derivatives: synthesis, characterization and antimycobacterial activity evaluation. MedChemComm DOI:10.1039. 2015 (6) 131-137. 

52.       Bansal S, Singh M, Kidwai S, Bhargava P, Singh A, Sreekanth V, Singh R* and Bajaj A*. Bile acid amphiphiles with tunable head groups as highly selective anti-tubercular agents. MedChemComm. * co-corresponding author2014 (5) 1761-1768. 

53.       Lakshinarayana SB, Boshoff HI, Cherian J, Ravindran S, GohA, Jiricek J, Nanjudappa M, Nayyar A, Gurumurthy M, Singh R, Dick T, Blasco F, Barry CE, Ho PC and Manjunatha UM. Pharmacokinetics-pharmacodynamics analysis of bicyclic -4-nitroimidazoles analogs in murine model of tuberculosis. pLOS One 2014 Aug 20; 9(8) e105222. 

54.       Arora G, Tiwari P, Mandal RS, Gupta A, Sharma D, Saha S and Singh R*. High through put screen identifies small molecule inhibitors specific for Mycobacterium tuberculosis phosphoserine phosphatase. Journal of Biological Chemistry Sep 5 2014; 289(36): 25149-25165. 

55.       Gupta M, Sajid A, Sharma K, Ghosh S, Arora G, Singh R, Nagaraja V, Tandon V and Singh Y. HupB, a nucleoid associated protein of Mycobacterium tuberculosis is modified by Serine/Threonine protein kinases in vivoJournal of Bacteriology July 2014 (196)2646-2657. 

56.       Kumar D, Beena, Khare G, Kidwai S, Tyagi AK, Singh R and Rawat DS. Synthesis of 1,2,3 triazole derivatives of isoniazid and their in vitro and in vivo anti-mycobacterial activity evaluation. European Journal of Medicinal Chemistry June 2014, (81) 301 – 313. 

57.       Chauhan P, Reddy PV, Singh R, Jaisinghani N, Gandotra S and Tyagi AK. Secretory phosphatases deficient mutant of Mycobacterium tuberculosis imparts protection at the primary site of infection in guinea pigs. pLOS One Oct 2013 8 (10): e77930. 

58.       Kumar N, Kapoor E, Singh R, Kidwai S, Kumbukgolla W, Bhagat S and Rawat DS. Synthesis and antibacterial/antitubercular activity evaluation of symmetrical trans-cyclohexane-1,4-diamine derivatives. Indian Journal of Chemistry Nov 2013 52B 1441 – 1450. 

59.       Singh R, Singh M, Arora G, Kumar S, Tiwari P, Kidwai S. Polyphosphate deficiency in mycobacterium tuberculosis is associated with enhanced drug susceptibility and impaired growth in guinea pigs. Journal of Bacteriology May 2013 195 2839 – 51. 

60.       Beena, Joshi S, Kumar N, Kidwai S, Singh R, Rawat DS. Synthesis and antitubercular activity evaluation of novel unsymmetrical cyclohexane-1,2-diamine derivatives. ARCH PHARM Nov 2012 345 (11) 896-901. 

61.       Gurumurthy M, Mukherjee T, Dowd CS, Singh R, Niyomrattanakit P, Tay JA, Nayyar A, Lee YS, Cherian J, Boshoff HI, Dick T, Barry CE and Manjunatha UH. Substrate Specificity of the Deazaflavin Dependent Nitroreductase (Ddn) from Mycobacterium tuberculosis is responsible for the Bioreductive activation of Bicyclic Nitroimidazoles. FEBS Journal, Oct 2011.

62.       Cherian J, Choi I, Nayyar A, Manjunatha UH, Lee YS, Boshoff HI, Singh R, Ha YH, Goodwin M, Lakshminarayana SB, Niyomrattanakit P, Jiricek J, Ravindran S, Dick T, Keller TH, Dartois V and Barry CE. Structure-activity relationships of antitubercular nitroimidazoles. 3. Exploration of the linker and lipophilic tail of the ((s)-2-nitro-6,7, dihydro-5H-imidazo [2,1-b][1,3]oxazin-6-yl)-(4-trifluoromethoxybenzyle) amine (6-amino-PA-824). Journal of Medicinal Chemistry 2011, Aug 25; 54 (16) 5639-59. 

63.       Singh R, Barry CE 3rd and Boshoff HI. The three RelE homologs of Mycobacterium tuberculosis have individual, drug-specific effects on bacterial antibiotic tolerance. Journal of Bacteriology Mar 2010, 192 (5) 1279 – 91. 

64.       Singh RManjunatha UH,  Boshoff HI, Ha YH, Niyomrattanakit P, Ledwidge R, Dowd CS, Lee IY, Kim P, Zhang L, Kang S, Keller TH, Jiricek J and Barry CE, 3rd. PA-824 Kills Nonreplicating Mycobacterium tuberculosis by Intracellular NO Release. Science Nov 28 2008, 322 (5906); 1392 - 1395. 

65.       Kim P, Zhang L, Manjunatha UH, Singh R, Patel S, Jiricek J, Keller TH, Boshoff HI, Barry CE 3rd and Dowd CS. Structure-activity relationships of antitubercular nitroimidazoles.  I.  Structural features associated with aerobic and anaerobic activity of 4- and 5-nitroimidazoles. Journal of Medicinal Chemistry Feb 11 2009 52 (5) 1317 – 1328. 

66.       Kim P, Kang S, Boshoff HI, Jiricek J, Collins M, Singh R, Manjunath UH, Zhang L, Goodwin M, Keller TH, Dowd CS and Barry CE 3rd. Structure-activity relationships of antitubercular nitroimidazoles II. Determinants of aerobic activity and QSAR modeling.  Journal of Medicinal Chemistry Feb 11 2009 52 (5) 1329 – 1344. Impact factor: 5.48

67.       Jain, R, Dey B, Dhar N, Rao V, Singh R, Gupta UD, Katoch VM, Ramanathan VD and Tyagi AK. Modulation of Cytokine Milieu in Lung by Recombinant BCG Over-expressing Ag85C Confers Enhanced and Long-lasting Protection against Tuberculosis. PLoS ONE Dec 4 20083(12) e3869. Impact factor: 3.53

68.       Khera A, Singh R, Shakila H, Rao V, Dhar N, Parmasivan, CN, Ramanathan, VD and Tyagi, AK Elicitation of efficient, protective immune responses by using DNA vaccines against tuberculosis. Vaccine Dec 1 2005, 23 (48-49) 5655 - 5665.

69.       Singh RSingh A and Tyagi AK. Deciphering the genes associated with pathogenesis of Mycobacterium tuberculosisTuberculosis Sep – Nov 2005, 85 (5-6) 325 – 335.

70.       Rao V, Dhar N, Shakila H, Singh R, Khera A, Parmasivan CN, Narayanan PR, Ramanathan VD and Tyagi AK Over-expression of the 19kDa lipoprotein of Mycobacterium tuberculosis obliterates the protective efficacy of BCG by polarizing the host immune responses to the Th2 phenotype. Scandinavian Journal of Immunology May 2005, 61(5) 210-217.

71.       Chopra P, Koduri H, Singh R, Koul A, Ghildiyal M, Sharma K, Tyagi AK and Singh Y. Nucleoside diphosphate kinase of Mycobacterium tuberculosis acts as GTPase activating protein for Rho-GTPases. FEBS Letters July 2004, 571 (1–3) 212–216.

72.       Singh R., Rao V, Shakila H, Gupta R, Khera A, Dhar N, Singh A, Koul A, Singh Y, Naseema M, Narayanan PR, Paramasivan CN, Ramanathan VD and Tyagi AK. Disruption of mptpB impairs the ability of Mycobacterium tuberculosis to survive in guinea pigs. Molecular Microbiology Nov 2003, 50 (3) 751 – 762.

73.       Chopra P, Singh B, Singh R, Vohra R, Koul A, Meena LS, Koduri H, Ghildiyal M, Deol P, Das TK, Tyagi AK and Singh Y.   Phosphoprotein phosphatase of Mycobacterium tuberculosis dephosphorylates serine-threonine kinases PknA and PknB. Biochemical Biophysical Research Communications Nov 2003, 311(1) 112–120.



  1. Singh RKumar P and Tahlan T. Drugs against Mycobacterium tuberculosis. Book Chapter in Drug discovery targeting drug-resistant bacteria. Elsevier Press. 2020.

  2.  Anil K Tyagi, Ramandeep Singh and Vibha Gupta.  Role of Mycobacterial Kinases and Phosphatases in bacterial growth and pathogenesis in “The Mycobacterial Cell Envelope, an overview” edited by Dr. Mamadou Daffe and Dr. Jean Marc Reyrat, 2008.

  3. Helena I Boshoff, Ramandeep Singh and Clifton E. Barry III. Virulence and Persistence mechanisms of Mycobacterium tuberculosis, in Handbook of Tuberculosis: Molecular Biology and Biochemistry edited by Dr. Stefan H. E. Kaufmann and Dr. Eric J Rubin, 2008.


1. Mutants of mycobacteria and process there off (US Patent filed ).

2. Recombinant BCG- Ag85C based immunization against Mycobacterium (Indian patent filed).

3. 1. 7-substituted 2-nitro 6,7- dihydroimidazo [2,1-b][1,3] oxazine derivatives of their optical isomers, pharmaceutical composition containing the same as an active ingredient (Korean Patent filed).

4. 5-Nitro-1,10, phenanthroline derivatives and pharmaceutical composition for prevention and treatment of tuberculosis containing the same (Korean Patent No. 10-1757629).

  • Fellows award for Research Excellence by the National Institutes of Health 2007
  • Ramalingaswami Fellowship from Department of Biotechnology; 2010-2015
  • National Bioscience Award for career development from Department of Biotechnology; 2015
  • DBT-Wellcome Trust India Alliance Senior Research Fellowship, 2020 – 2025. 








  • 01292876305