DR.AMIT KUMAR PANDEY
Ph.D.
ASSOCIATE PROFESSOR
- Posdoctoral Fellow, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Posdoctoral Fellow, University of Nebraska-Lincoln, Nebraska, USA
- Ph.D. Indian Veterinary Research Institute, Izatnagar, U.P., India
- M.Sc. (Animal Biotechnology), National Dairy Research Institute, Karnal, India
- B.V.Sc and A.H, Orissa University of Agriculture and Technology, Bhubaneswar, India
I. Understanding the biology of Mycobacterial Persistence
Globally, a third of human population is infected with Mycobacterium tuberculosis(Mtb), the causative agent of tuberculosis. Mtb, being an obligate intracellular pathogen, has lived to co-evolve with human for centuries. Unlike actively infected individuals, latently infected population harbors pathogen for decades without showing any overt symptoms. This interesting phenotype is attributed to a slow growing, metabolically altered sub set of heterogeneous Mtb population called ‘persisters’. These persisters are refractory to anti-mycobacterial insult and can only be targeted by a strict regimen comprising of a combination of drugs for an unusually extended period. The protracted regimen triggers non-compliance and contributes towards increase in the frequency of cases involving MDR and XDR tuberculosis.
A. Bacterial metabolism, physiology and persistence
The ability of the pathogen to “adapt” to host environment is key to its persistence. Understanding bacterial metabolism and physiology is important to decipher the mechanism and pathways critical for persistence of mycobacteria inside host. Since Mtb is an obligate intracellular pathogen, it depends on host for its nutritional requirements. Inside the host, Mtb subsists mainly on host derived fatty acid and cholesterol as a preferred carbon source. Although Mtb ingests cholesterol throughout the infection process, cholesterol becomes essential only during the later stage of chronic infection. Genetic and molecular understanding of cholesterol utilization, its mechanism and relevance would contribute significantly in designing novel intervention strategies in the treatment of tuberculosis. The knowledge acquired on the genes involved in uptake and metabolism of cholesterol in Mtb is very likely to generate new and more efficient drug targets. The role of cholesterol metabolism in mycobacterial persistence would also be better understood. The ultimate goal will be to generate an interactome map of the regulatory pathways of cholesterol utilization in Mtb.
B. Cholesterol catabolic pathways as therapeutics target
Current tuberculosis treatment regimen involves multiple drugs for a prolong period. The duration could be from three months to two years depending on the type of infection. Prolong treatment leads to non-compliance and emergence of newer drug resistance strains. Shortening the therapy would go a long way in alleviating this problem. It is widely perceived that the major culprits are the so-called non-replicating and metabolically inactive “persister” population. The importance of cholesterol metabolism during the persistence stage of Mtb infection and its potential role in generation of persisters is very intriguing. In light of the above facts and hypothesis the focus of the current proposal is to screen for chemical inhibitors that specifically target these pathways. The long-range goal would be identify novel anti-tubercular drugs that specifically targets “persisters”. These novel compounds in combination with the standard frontline anti-tubercular drugs would significantly enhance the success rate in tuberculosis therapy.
C. Iron regulation in Mtb and its implications on mycobacterial persistence
Although, iron is essential for most of the bacteria, excess of intracellular free iron is toxic. Failure to do so might lead to death either due to iron deficiency or toxicity. Hence, the acquisition and storage of iron in bacteria is tightly regulated. Since iron deprivation is also one of the anti-microbial strategies that the host adopts, both pathogen and the host compete for the limited iron during infection. We for the first time have demonstrated that the Mtb transcription repressor protein sufRTBregulates the ISC operon and has a role in controlling the intracellular iron homeostasis in Mtb. Disruption of the iron homeostasis in ΔsufRTBdecreased the fitness of the mutant strain to grow inside mouse bone marrow-derived macrophages. The transcription repressor protein sufRTBwas also required for growth of Mtb under oxidative and nitrosative stress conditions. The enhanced biofilm production phenotype observed in ΔsufRTBis intriguing and suggests a role of intracellular iron homeostasis in the generation of biofilms in mycobacteria. Finally, we demonstrated that the sufRTBprotein mediated regulation of Fe homeostasis in Mtb is required for Mtb to persist inside the host.
D. Screening and Identifying new molecular scaffolds targeting persisters
We in our lab have successfully identified proteins critical for the generation and maintenance of mycobacterial persisters. The aim of the proposal is to shorten the treatment regimen by identifying novel compounds that specifically target these proteins thereby significantly decreasing the frequency of generation of persisters during Mtb infection.
II. Live recombinant M bovisBCG (rBCG) strain as a better vaccine candidate against tuberculosis
Although, Mycobacterium bovis derived BCG is widely been used as vaccine to prevent tuberculosis, its effectiveness towards controlling tuberculosis is questionable. BCG is shown to be good at controlling severe forms of tuberculosis in infants, but fails to do so in case of pulmonary tuberculosis in adults. The challenge is to design a vaccine strain that is a) safe, b) immunogenic, c) longlasting and d) protects against tuberculosis caused by all strains.We in our lab are working on strategies to generate rBCG strains that we believe will be more immunogenic and hence would generate better and long lasting protective immune response against Mtb.
III. Host-Directed Therapies against tuberculosis
We are also interested in identifying and targeting critical host proteins that facilitates mycobacterial survival inside host. We are currently developing protocols for CRISPR-cas9 based strategies to delete specific genes for development of knockout cell lines. The plan is to design an unbiased approach towards screening and identifying host genes that modulate growth of Mtb inside cells. The long-term goal is to identify inhibitors against these genes to be used as drug against tuberculosis.
Publication
Pre-Print
1. Zohra Hashmi, Shivendra Pratap Singh#, Sakshi Talwar#, Abhin Kumar Megta, Mitul Srivastava, Debapriyo Sarmadhikari, Taruna Sharma, Shailendra Asthana*, Vengadesan Krishnan*, Amit Kumar Pandey*. Mechanistic understanding of cholesterol-dependent activation of VapC12 toxin in Mycobacterium tuberculosis.BioRxiv 2053.10.13.681325; doi: https://doi.org/10.1101/2025.10.10.681325
2. Methionine metabolism shapes immune response against tuberculosis. Nidhi Yadav, Ashish Gupta, Ranjan Shaoo, Tundup Namgail, Sichitra Jena, Nupur Sharma, Jaswinder Singh Maras, Amit Kumar Pandey, Shyam Kumar Masakapalli, Debasis Dash and Ranjan Kumar Nanda. BioRxiv 2025.10.07.680834; doi: https://doi.org/10.1101/2025.10.07.680834
(2020-2025)
Published as Corresponding author
3. Taruna Sharma, Shaifali Tyagi, Rahul Pal, Jayendrajyoti Kundu, Sonu Kumar Gupta, Vishawjeet Barik, Vaibhav Kumar Nain, Manitosh Pandey, Prabhanjan Dwivedi, Bhishma Narayan Panda, Yashwant Kumar, Ranjan Kumar Nanda, Samrat Chatterjee and Amit Kumar Pandey*. Phosphoglucomutase A mediated regulation of carbon flux is essential for antibiotic and disease persistence in Mycobacterium tuberculosis. mSystems, 30 June 2025, 10(7):e0042025
4. Vaibhav Kumar Nain, Vishawjeet Barik, Manitosh Pandey, Mohit Pareek, Taruna Sharma, Rahul Pal, Shaifali Tyagi, Manish Bajpai, Prabhanjan Dwivedi, Bhishma Narayan Panda, Yashwant Kumar, Shailendra Asthana and Amit Kumar Pandey*. pH dependent direct sulfhydrylation pathway is required for pathogenesis of Mycobacterium tuberculosis. Comm Biol. 8, Article number: 637 (2025).
5. Satish Tiwari, Vaibhav Kumar Nain, Mohammed Ahmad, Varun Kumar, Deepsikha Kar, Swati Kumari, Abhisek Dwivedy, Ravi Kant Pal, Amit Kumar Mohapatra, Vishawjeet Barik, Rahul Pal2, Mohini Singla, Soumya Banerjee, Neha Sharma, Jaswinder Singh Maras, Perumal Nagarajan, Ranjan Kumar Nanda, Amit Kumar Pandey# & Bichitra Kumar Biswal#. Disruption of de novo histidine biosynthesis of Mycobacterium tuberculosis affects the depletion of the pathogen. ACS Infectious Diseases (2025). In Press.
6. Rahul Pal, Sakshi Talwar, Manitosh Pandey, Vaibhav Nain, Taruna Sharma, Shaifali Tyagi, Vishawjeet Barik, Shweta Chaudhary, Sonu Kumar Gupta, Yashwant Kumar, Ranjan Nanda, Amit Singhal and Amit Kumar Pandey*. Rv0495cregulates redox homeostasis in Mycobacterium tuberculosis. Tuberculosis 2024;45:102477.https://doi.org/10.1016/j.tube.2024.102477
7. Shaifali Tyagi, Srikanth Sadhu, Taruna Sharma, Abhijit Paul, Manitosh Pandey, Vaibhav Nain, Deepak Rathore, Samrat Chatterjee, Amit Awasthi*, Amit Kumar Pandey*. VapC12 ribonuclease toxin modulates host immune response during Mycobacterium tuberculosis infection. Frontiers in Immunology.15:1302163 (2024) doi: 10.3389/fimmu.2024.1302163
8. Manitosh Pandey, Sakshi Talwar, Rahul Pal, Vaibhav Nain, Sonia Johri, Amit Singhal, Amit Kumar Pandey*. Transcription factor mce3R modulates antibiotics and disease persistence in Mycobacterium tuberculosis. Research in Microbiology. 2023; https://doi.org/10.1016/j.resmic.2023.104082
9. Manitosh Pandey, Satish Tiwari, Sonia Johri, Bichitra K Biswal, Chandresh Sharma*, Amit Kumar Pandey*.Investigating a putative transcriptional regulatory protein encoded by Rv1719 gene of Mycobacterium tuberculosis. The Protein Journal. 2022;41(3):424-433
Published as Co-author
10. Preksha Gaur, Yesheswini Rajendran, Bhagyashree Srivastava, Manasvini Markandey, Vered Fishbain-Yoskovitz, Gayatree Mohapatra, Aamir Suhail, Shikha Choudhary, Shaifali Tyagi, Subhash Chandra Yadav, Amit Kumar Pandey, Yifat Merbl, Avinash Bajaj, Vineet Ahuja and C. V. Srikanth*. Rab7-dependent regulation of goblet cell protein CLCA1 modulates gastrointestinal homeostasis. eLife: April 9, 2024. http://doi.org/10.7554/elife.89776.3
11. Sunil Gujjar, Anurag Tyagi, Saloni Sainger, Puja Bharti, Vaibhav Nain, Pratibha Sood, Prakash Jayabal, Jagadish Chandra Sharma, Priyanka Sharma, Sanjay Rajput, Anil Kumar Pandey, Amit Kumar Pandey, Prasad Abnave, Santosh Mathapati. Biocompatible Human Placental Extracellular Matrix Derived Hydrogels. Advanced Biology: 8;(1);Oct 2024. https://doi.org/10.1002/adbi.202300349
12. Omicron sub-lineage BA. 5 infection results in attenuated pathology in hACE2 transgenic mice Zaigham Abbas Rizvi, Jyotsna Dandotiya, Srikanth Sadhu, Ritika Khatri, Janmejay Singh, Virendra Singh, Neeta Adhikari, Kritika Sharma, Vinayake Das, Amit Kumar Pandey, Bhabatosh Das, Guruprasad Medigeshi, Shalendra Mani, Shinjini Bhatnagar, Sweety Samal, Anil Kumar Pandey, Pramod Kumar Garg, Amit Awasthi. Comm Biol 6, 935 (2023). https://doi.org/10.1038/s42003-023-05263-6
13. Sandeep R Kaushik, Sukanya Sahu, Hritusree Guha, Sourav Saha, Ranjit Das, Rukuwe-u Kupa, Wetetsho Kapfo, Trinayan Deka, Rumi Basumatary, Asunu Thong, Arunabha Dasgupta, Bidhan Goswami, Amit Kumar Pandey, Lahari Saikia, Vintosole Khamo, Anjan Das, Ranjan Nanda*.Low levels of Fe and Se with high IL-6/IL-10 likely influence nutritional immunity in tuberculosis patients. Front Immunol. 2022;13:985538. doi: 10.3389/fimmu.2022.985538
14. Zaigham Abbas Rizvi, Rajdeep Dalal, Srikant Sadhu, Akshay Binayke, Jyotsna Dandotiya, Yashwant Kumar, Tripti Srivastava, Sonu Kumar Gupta, Suruchi Agarwal, Manas Ranjan Tripathy, Deepak Kumar Rathore, Amit Kumar Yadav, Guruprasad R. Medigeshi, Amit Kumar Pandey, Sweety Samal, Shailendra Asthana, Amit Awasthi*.Golden Syrian hamster as a model to study cardiovascular complications associated with SARS-CoV-2 infection. eLife. 2022;11;e73522, doi: 7554/eLife.73522.
15. Rahul Gupta, Manitosh Pandey, Amit Kumar Pandey, Pramod Kumar Tiwari* and Rabbind Singh Amrathlal*. Novel genetic polymorphisms identified in the clinical isolate of Mycobacterium tuberculosis PE_PGRS33 gene modulates cytokines secretion and promotes in-vitro survival inside macrophages. Journal of Infection and Public Health. 2021); doi: https://doi.org/10.1016/j.jiph.2022.01.001
16. Srikanth Sadhu, Zaigham Abbas Rizvi, Ramendra Pati Pandey, Rajdeep Dalal, Deepak Kumar Rathore, Bhoj Kumar, Manitosh Pandey, Yashwant Kumar, Renu Goel, Tushar Kanti Maiti, Atul Kumar Johri, Ashutosh Tiwari, Amit Kumar Pandey, Amit Awasthi*. Gefitinib results in robust host-directed immunity against Salmonella infection through proteo-metabolomic reprogramming. Frontiers in Immunology.2021;31 March 2021 https://doi.org/10.3389/fimmu.2021.648710.
17. R. Kumar Pramod, Asha V. Nair, Padmakar Kamalakar Tambare, Kanchana Chauhan, T. Vinay Kumar, R. Anju Rajan, Blessy M. Mani, Muhasin Asaf and Amit Kumar Pandey. Reverse Zoonosis of coronavirus disease-19: Present status and the control by one health approach. Veterinary World. 2021;14(10): 2817-2826.https://doi.org/10.14202/vetworld.2021.2817-2826
18. Ranjeet Singh Mahla, Akhilesh Kumar, Helena Tutil, Sreevidhya Tarakkad Krishnaji, Bharathwaj Sathyamoorthy, Mahad Noursadeghi, Judith Breuer, Amit Kumar Pandey and Himanshu Kumar*. Essential role of NIX in metabolic reprogramming for macrophage plasticity during mycobacterial species infection. Tuberculosis. 2021; vol 126,https://doi.org/10.1016/j.tube.2020.102046
2016-2020
19. Sakshi Talwar, Manitosh Pandey, Chandresh Sharma, Rintu Kutam, Josephine Lum, Daniel Carbajo, Renu Goel, Michael Poidinger, Debasis Dash, Amit Singhal and Amit Kumar Pandey*. Host cholesterol modulates the generation and enrichment of persister population during Mycobacterium tuberculosis infection. mSystems. 2020; vol 5(6). https://doi.org/10.1128/mSystems.00855-20.
20. Chetan Prakash, Manitosh Pandey, Yatendra Singh, Saneev Kanojiya, Amit Kumar Pandey and Niti Kumar*. Exploration of potential extra-ribosomal functions of Mtb RpsB in imparting stress resilience and drug tolerance in Mycobacteria. Biochimie. 2020;vol 177, Oct, Pages 87-97.
https://doi.org/10.1016/j.biochi.2020.08.007
21. Renu Dharra, Radhakrishnan VS, Tulika Prasad, Zoozeal Thakur, Jeffrey Cirillo, Amit Kumar Pandey, Mahesh Kulharia and Promod Mehta.Evaluation of in silico designed inhibitors targeting MelF (Rv1936) against Mycobacterium marinumwithin macrophages. Scientific Reports. 2019;vol 9, Article number: 10084. https://www.nature.com/articles/s41598-019-46295-5
22. Manitosh Pandey, Sakshi Talwar, Sutapa Bose and Amit Kumar Pandey*.Iron homeostasis in Mycobacterium tuberculosis is essential for persistence. Scientific Reports. 2018;volume 8, Article number: 17359. https://www.nature.com/articles/s41598-018-35012-3
23. Manitosh Pandey, Alok Kumar Singh, Ritesh Thakare, Sakshi Talwar, Pratiksha Karaulia, Arunava Dasgupta, Sidharth Chopra, and Amit Kumar Pandey*.Diphenyleneiodonium chloride (DPIC) displays broad-spectrum bactericidal activity. Scientific Reports. 2017; vol 7: 11521. https://doi.org/10.1038/s41598-017-11575-5.
24. Alok Kumar Singh, Pratiksha Karaulia, Ritesh Thakare, Swetarka Das, Manitosh Pandey, Amit Kumar Pandey, Sidharth Chopra and Arunava Dasgutpa*.Biological evaluation of Diphenyleneiodonium chloride (DPIC) as a potential drug candidate for treatment of non-tuberculous mycobacterial infections. Journal of Antimicrobial Chemotherapy. 2017; Volume 72, Issue 11, 1 Nov, Pages 3117–3121, https://doi.org/10.1093/jac/dkx277.
25. Rennu Dharra, Sakshi Talwar, Jeffery D. Cirillo, Amit Kumar Pandey, Mahesh Kulharia, and Parmod K. Mehta*.Rational design of drug-like compounds targeting Mycobacterium marinum MelF Protein. PloS One (2017). https://doi.org/10.1371/journal.pone.0183060.
26. Anshika Singhal, Gunjan Arora, Richa Virmani, Parijat Kundu, Tanya Khanna, Andaleeb Sajid, Richa Misra, Jayadev Joshi, Vikas Yadav, Sintu Samanta, Neeru Saini, Amit K. Pandey*, Sandhya S. Visweswariah, Christian Hentschker, Dorte Becher, Ulf Gerth* and Yogendra Singh*.Systematic Analysis of Mycobacterial Acylation Reveals First Example of Acylation-mediated Regulation of Enzyme Activity of a Bacterial Phosphatase. J Biol Chem. 2015;Oct 23;290(43):26218-34. doi: 10.1074/jbc. M115.687269. Epub 2015 Sep 8.
*co-corresponding authors
2011-2015
27. Gunjan Arora, Andaleeb Sajid, Anshika Singhal, Jayadev Joshi, Richa Virmani, Meetu Gupta, Nupur Verma, Abhijit Maji, Richa Misra, Gregory Baronian, Amit K. Pandey, Virginie Molle, Yogendra Singh. Identification of Ser/Thr kinase and forkhead associated domains in Mycobacterium ulcerans: characterization of novel association between protein kinase Q and MupFHA. PLoS Negl Trop Dis. 2014; Nov 20;8(11):e3315. doi: 10.1371/journal.pntd.0003315. eCollection 2014 Nov.
28. Jennifer E.Griffin*, Amit K. Pandey*, Sarah A. Gilmore, Valerie Mizrahi, John D. McKinney, Carolyn R. Bertozzi and Christopher M. Sassetti. Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chemistry and Biology. 2012; vol 24,19(2):218-27. *contributed equally to this work
2006-2011
29. Amit K. Pandey, Yibin Yang, Zhaozhao Jiang, Sarah M. Fortune, Francois Coulombe, Marcel A. Behr, Katherine A. Fitzgerald, Christopher M. Sassetti and Michelle A. Kelliher. NOD2, RIP2 and IRF5 Play a Critical Role in the Type I Interferon Response to Mycobacterium Tuberculosis. PLoS Pathogen. 2009;Jul;5(7):e1000500. Epub 2009 July3.
30. Francois Coulombe, Maziar Divangahi, Frederic Veyrier, James Gleason, Yibin Yang, Michelle A.Kelliher, Amit K. Pandey, Christopher M. Sassetti, Michael B. Reed and Marcel A. Behr. Increase NOD2-mediated recognition of N-glycolylated muramyl dipeptide. Journal of Expt. Med. 2009;vol 206(8):1709-16. Epub 2009 Jul 6.
31. Jeffrey P. Murry, Amit K. Pandey, Christopher M. Sassetti, and Eric J. Rubin. 2009. Phthiocerol dimycocerosate (PDIM) transport is required for resisting IFN-γ-independent immunity. Journal of Infectious Diseases. 2009;Sep 1;200(5):774-82.
32. Maurine D Miner, Jennifer C Chang, Amit K Pandey, Christopher M Sassetti and David R Sherman. Role of Cholesterol in Mycobacterium tuberculosis infection. Indian Journal of Exp. Biol. 2009; June; 47: 407-11.
33. Jennifer C Chang, Maurine D Miner, Amit K Pandey, Wendy P Gill, Nada S Harik, Christopher M Sassetti and David R Sherman. igr genes and Mycobacterium tuberculosis cholesterol metabolism. J. Bacteriol. 2009);191(16):5232-9.
34. Amit K. Pandey, Sahadevan Raman, Rose Proff, Swati Joshi, Choong-Min Kang, Eric J. Rubin, Robert N. Husson and Christopher M. Sassetti. Nitrile-inducible gene expression in mycobacteria. Tuberculosis (Edinb). 2009; Jan;89(1):12-16
35. Amit K. Pandey and Christopher M Sassetti.Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl. Acad. Sci. U S A. 2008; March 18; 105(11):4376-80. http://www.pnas.org/content/105/11/4376.full.pdf+html
36. Yibin Yang, Catherine Yin, Amit Pandey, Derek Abbott, Christopher Sassetti and Michelle A. Kelliher. NOD2 pathway activation by MDP or Mycobacterium tuberculosis infection involves the stable polyubiquitination of Rip2. J. Biol. Chem. 2007; Dec 14; 282(50):36223-9.
37. Swati Joshi, Amit K. Pandey, Nicole Capite, Sarah M. Fortune, Eric J. Rubin, and Christopher M. Sassetti.Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc Natl Acad Sci. U S A. 2006; Aug 1; 103(31):11760-5.
38. Parmod K. Mehta*, Amit K. Pandey*, Selvakumar Subbian, Mustapha M. Samarkandi, Suat L.G. Cirillo and Jeffery D. Cirillo.Identification of Mycobacterium marinum macrophage infection mutants. Microb Pathog. 2006;Apr;40(4):139-51. *contributed equally to this work.
Projects in the laboratory:
1. We have identified novel pathways that regulate cholesterol mediated mycobacterial persistence and we are looking for highly motivated graduate students who are interested in understanding the biology of mycobacterial persistence. More specifically, the research focus will be to characterize and understand the roles of few identified Mtb genes in mycobacterial persistence.
2. My lab will be interested in generating a carbon source independent in-vitro model of mycobacterial persistence. Briefly, since we have some preliminary understanding of how persisters are generated, we would like to utilize our understanding to rewire Mtb signaling by generating recombinant Mtb that mimic “persisters”. The strain thus generated would be characterized by identifying persister specific transcriptional and proteomic signatures. This model would than be used for screening antimicrobial compounds specifically targeting persisters.
3. Since Mtb is an obligate intracellular pathogen, it has to adapt very quickly to intracellular niche and neutralize any host-mediated insults. We would also be interested in exploring the contribution of host in helping long-term survival of the pathogen inside the host. Briefly, the potential host targets genes will be knocked out by CRISPR and the role of specific host genes would be deciphered by analysing the growth of mycobacteria in these KO cell lines.
-
Ramalingaswami Fellowship, 2010-11
-
ICAR-SRF Fellowship
-
ICAR JRF Fellowship
MR.VISHAWJEET BARIK
PH.D STUDENT
MS.ZOHRA HASHMI
PH.D STUDENT
MS.ANJALI MISHRA
PH.D STUDENT
MR.SOURABH KUNDU
PH.D STUDENT
DR.VAIBHAV KUMAR NAIN
PROJECT RESEARCH SCIENTIST-I
- 911292876322
- AMITPANDEY[AT]THSTI[DOT]RES[DOT]IN