• भारत सरकार के विज्ञान एवम प्रौदयोगिकी मंत्रालय के जैव प्रौदयोगिकी विभाग की स्वायत्त संस्थान
  • AN AUTONOMOUS INSTITUTE OF DEPT. OF BIOTECHNOLOGY, MINISTRY OF SCIENCE AND TECHNOLOGY, GOVT OF INDIA
  • Home
  • Faculty Profile
Publication

A.    Patents

1.     Design, synthesis of novel Oxyindole inhibitors of DENV RNA-dependent RNA polymerase (PCT application number:PCT/IN2021/050596)

2.     Novel silver nano-based aqueous sanitizer against pathogens (tested for anti-COVID activity in THSTI; provisional Indian patent number 202011030085)

 

 

B.     Book chapter: 

1.     Bhattacharyya S. (2020) Inflammation During Virus Infection: Swings and Roundabouts. In: Bramhachari P. (eds) Dynamics of Immune Activation in Viral Diseases. Springer, Singapore. (https://doi.org/10.1007/978-981-15-1045-8_3)

C.  Reviews (accepted for publication)

 

1.     Kush Kumar Pandey, Deeksha Madhry, Y. S .Ravi Kumar, Shivani Malvankar, Leena Sapra, Rupesh K. Srivastava, Sankar Bhattacharyya, BhupendraVerma. Regulatory roles of tRNA-derived RNA fragments in human pathophysiologyMolecular Therapy: Nucleic Acid 2021. (https://doi.org/10.1016/j.omtn.2021.06.023)

 

2.     Deeksha Madhry, Kush Kumar Pandey, Jaskaran Kaur, Yogita Rawat, Leena Sapra, Ravi Kumar Y.S., Rupesh K. Srivastava, Sankar Bhattacharyya, Bhupendra Verma.  Role of non-coding RNA in Dengue virus host interactionsFrontiers in Bioscience-scholar. 2021 (13), pp 44-55.

3.     Ashok Kumar, Rita Singh, Jaskaran Kaur, Sweta Pandey, Vinita Sharma, Lovnish Thakur, Sangeeta Sati, Shailendra Mani, Shailendra Asthana, Tarun Kumar Sharma, Susmita Chaudhuri, Sankar Bhattacharyya, Niraj Kumar. Wuhan to World: The COVID-19 PandemicFrontiers in Cell Infection and Microbiology. 2021; 11: 596201.

4.     Venkatanarayana Chowdary Maddipati, Lovika Mittal, Manohar Mantipally, Shailendra Asthana, Sankar Bhattacharyya* and Rambabu Gundla*. A Review on the Progress and Prospects of Dengue Drug Discovery Targeting NS5 RNA- Dependent RNA PolymeraseCurrent Pharmaceutical Design, 2020, 26, p1-24. [impact factor: 2.4; * corresponding author

 

5.     Lovika Mittal, Anita Kumari, Charu Suri, Sankar Bhattacharyya, Shailendra Asthana.  Insights into structural dynamics of allosteric binding sites in HCV RNA-dependent RNA polymerase. Journal of Biomolecular Structure and Dynamics (2019). 

 

6.     Bhattacharyya S. Can’t RIDD off virusesFrontiers in Microbiology, 2014. (Review invited to be part of the Research Topic ‘The unfolded protein response in virus infections’). 

D.    Research articles (published or accepted for publication)

1.     Malladi Sameer, Patel Unnatiben Rajeshbhai, Rajmani Raju S, Singh Randhir, Pandey Suman, Kumar Sahil, Khaleeq Sara, van Vuren Petrus Jansen, Riddell Shane, Goldie Sarah, Gayathri Savitha, Chakraborty Debajyoti, Kalita Parismita, Pramanick Ishika, Agarwal Nupur, Reddy Poorvi, Girish Nidhi, Upadhyaya Aditya, Khan Mohammad Suhail, Kanjo Kawkab ; Bhat Madhuraj, Mani Shailendra, Bhattacharyya Sankar ; Siddiqui, Samreen ; Tyagi, Akansha, Jha , Sujeet, Pandey Rajesh, Tripathi Shashank, Dutta Somnath, McAuley Alexander J., Singanallu Nagendrakumar Balasubramanian, Vasan Seshadri S., Ringe Rajesh P., Varadarajan Raghavan. Immunogenicity and protective efficacy of a highly thermotolerant, trimeric SARS-CoV-2 receptor binding domain derivative. ACS Infectious Diseases (accepted for publication)

 

2.     Sandip Kumar De, Sarmistha Ray, Yogita Rawat, Subrata Mondal, Arpita Nandy, Priya Verma, Anuradha Roy, Prabhas Sadhukhan, Chandrima Das, Sankar Bhattacharyya* and Dulal Senapati*. Porous Au-Ag Nanobioconjugate for Rapid Impedimetric Direct Sensing of DENV-2 (manuscript under review ; * co-corresponding author).

3.     Tripti Shrivastava, Balwant Singh, Zaigham Abbas Rizvi, Rohit Verma, Sandeep Goswami, Preeti Vishwakarma, Kamini Jakhar, Sudipta Sonar, Shailendra Mani, Sankar Bhattacharyya, Amit Awasthi, Milan Surjit. Comparative Immunomodulatory Evaluation of the Receptor Binding Domain of the SARS-CoV-2 Spike Protein; a Potential Vaccine Candidate Which Imparts Potent Humoral and Th1 Type Immune Response in a Mouse ModelFrontiers in Immunology (2021); 12: 641447

4.     Ojha A.,    Bhasym A, Mukherjee S, Annarapu GK, Bhakuni T, Akbar I, Seth T, Vikram NK, Vrati S, Basu A, Bhattacharyya S, Guchhait P. Platelet factor 4 promotes rapid replication and propagation of Dengue and Japanese encephalitis virusesEBioMedicine (2019) volume (39), pages 332-347. [impact factor: 6.6]

5.     Sharma M, Sharma KB, Chauhan S, Bhattacharyya S, Vrati S, Kalia M. Diphenyleneiodonium enhances oxidative stress and inhibits Japanese encephalitis virus induced autophagy and ER stress pathwaysBiochemical Biophysical Research Communication (2018) volume 502(2), pages 232-237. [impact factor: 2.7]

6.     Sharma M, Bhattacharyya S, Sharma KB, Chauhan S, Asthana S, Abdin MZ, Vrati S, Kalia M. Japanese encephalitis virus activates autophagy through XBP1 and ATF6 ER stress sensors in neuronal cellsJournal of General Virology (2017), volume 98(5), pages 1027-1039. [impact factor: 2.8]

7.     Ojha A, Nandi D, Batra H, Singhal R, Annarapu GK, Bhattacharyya S, Seth T, Dar L, Medigeshi GR, Vrati S, Vikram NK, Guchhait P. Platelet activation determines the severity of thrombocytopenia in dengue infection. Nature Scientific Reports (2017), volume 7, 41697. [impact factor: 4.0]

8.     S. Bhattacharyya*and S. Vrati. The Malat1 long non-coding RNA is upregulated by signalling through the PERK axis of unfolded protein response during flavivirus infection. Nature Scientific Reports (2015) volume 5, 17794. [* co-corresponding author]

9.     Sharma M, Bhattacharyya S, Nain M, Kaur M, Sood V, Gupta V, Khasa R, Abdin MZ, Vrati S, Kalia M. Japanese Encephalitis Virus replication is negatively regulated by autophagy and occurs on LC3-I- and EDEM1-containing membranesAutophagy(2014), volume 10 (9), pages 1637-1651.

10.   Bhattacharyya S*, Sen U, Vrati S.  Regulated IRE1-dependent decay pathway is activated during Japanese encephalitis virus-induced unfolded protein response and benefits viral replication. Journal of General Virology (2014), volume 95(1), pages 71-79. (* first and corresponding author) 

11.   Verma B, Bhattacharyya S, Das S. Polypyrimidine tract-binding protein interacts with coxsackievirus B3 RNA and influences its translationJournal of General Virology. 2010 May;91(Pt 5):1245-55. [

12.   Zipprich JT, Bhattacharyya S, Mathys H, Filipowicz W. Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repressionRNA. 2009 May; 15(5):781-93. 

13.   Bhattacharyya S, Verma B, Pandey G, and Das S. The structure and function of a cis-acting element located upstream of the IRES that influences Coxsackievirus B3 RNA translationVirology. 2008 Aug 1; 377(2):345-54. 

14.   Bhattacharyya S and Das S. An apical GAGA loop within 5' UTR of the coxsackievirus B3 RNA maintains structural organization of the IRES element required for efficient ribosome entryRNA Biology. 2006 Apr; 3(2):60-8. 

15.   Bhattacharyya S and Das S. Mapping of secondary structure of the spacer region within the 5'-untranslated region of the coxsackievirus B3 RNA: possible role of an apical GAGA loop in binding La protein and influencing internal initiation of translationVirus Research. 2005 Mar; 108(1-2):89-100. 

16.   Bhattacharyya S., Mapa K., Prabhavathi S., Sudhamani S.R., Menon P.K., John K.P., Shivaram C., Amarnath S., Das S. Phylogenetic conservation of the stem-loop III structure of the 5' untranslated region of Hepatitis C virus RNA among natural variants in samples collected from Southern IndiaArchives of Virology. 2004 May;149(5):1015-26. 

Ms. Jaskaran Kaur

Ms. Yogita Rawat

  • SANKAR[AT]THSTI[DOT]RES[DOT]IN